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Issues in automatic object recognition:
Linking geometry and material data to

predictive signature codest

Paul H. Deitz
Michael-J. Muuss

Edwin 0. Davisson

Vulnerability/Lethality Division
US Army Ballistic Research Laboratory

Aberdeen Proving Ground, MD 21005-5060

ABSTRACT

The principal focus of Automatic Object Recognition (AOR) involves the generation of appropriate algorithms
to process the output of multi-spectral sensor arrays. Given the high dimensionality that characterizes the
signatures of targets of i:aterest, it is normally impossible- to -satisfy the need for raw signature data by means of
measurement records a'one. Individual sensor characteristics in conjunction with aspect-angle dependence, target
and background con'tguration (singly and in synergism) and multi-spectral tradeoffs inexorably -Iad to a
requirement for predictive signature modeling methods. By means of this stratagem, a-measured signature data
base can be leveraged significantly, improving the fidelity of -the overall simulation.

Irrespective of the specific representation used for a three-dimensional geometry and material database, rarely
does a predict i% e-,signature application code read that database directly. Rather, a specific interrogation method is
used to pass particular -geometric and material attributes-to the application-code. Clearly the-nature of the physics
employed in-the-application-is both enabled and constrained -by-the form of the interrogation- process used.

In this paper, several examples of predictive radar -codes are given, illustrating several-strikingly different ways
of linking geometry to-applications. Following those-examples the interface methods known-to- the -authors will be
described. Vhile many-of-the techniques have already been implemented, some are currently in development. In
addition, the utility of various techniques will be-related-to particular application codes.

1. INTRODUCTION

The principal focus of Automatic Object Recognition (AOR) involves the generation of -appropriate algorithms
to process the output of what are often multi-spectral sensor arrays. The generation- and testing of such
algorithms necessarily -require -the full panoply of desired object (target) signatures -as wa-l as undesired and
unavoidable (clutter)- signatures. Even ignoring the sensor response characteristics (time- and- space resolution,
polarization, .,oise, etc.), -both the target and clutter signature sets are unbounded even for a single -frequency, let
alone in multi-spectral domains. The unboundedness is~strictly true for these signature sets- and- most probably so
even- for derived statistica! -measures.

Given, therefore, -the- requirements of a typical-AORvproject for copious signature files-for algorithm generation
and testing, it is normally impossible to satisfy the need- by means of measurement records alone. The single-
frequency sensor characteristics noted above in conjunction with aspect angle dependence, target and background
configuration (singly and-in synergism) and multi-spectral tradeoffs, inexorably lead to a requirement for predictive

+ PrcncntH at- the Advanced"listuLate-Prugrani on Automatib Obijeci Recognitlon, sponsored by the bociety of i'hoto-Optical
Instrumentation -Engineers (SPIE), Cocoa Beach, FL, April 21-23,i 190.
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modeling methods. By means of this stratagem, a measured signature data base can be -leveraged significantly,
improving the fidelity of the overall simulation.

For more than twenty years, the Ballistic Research Laboratory (BRL) has been utilizing solid geometric
modeling methods to support vulnerability, lethality and neutron transport studies of military targots. In such.
item-level studies, target geometry and material information are passed to various application codes to derive
certain measures-of-performance. Building on the general paradigm, workers at BRL and-elsewhere have extended
the general techniques to support many- predictive signature models4 "6 including optical, millimetre wave
(MMW),t Infra-Red (IR), magnetic and X-ray models.

It is important to note that this type- of analysis must generally be supported by a solid-geometric model. A
solid model7 is a computer description of closed, solid, three-dimensional shapes represented by an analytical
framework within which the three-dimensional material can be completely and unambiguouslydefined. Two major
families of solid model representations exist, each with several unique advantages. The first is the Combinatorial
Solid Geometry Representation (CSG-Rep).8 Solid models of this type are expressed as boolean combinations of
primitive solids which are geometric entities described by some set of parameters-and occupying a fixed volume in
space. The second is the Boundary Representation (B-Rep), of which there are two sub-types: (1) explicit, where
each solid is described by an explicit enumeration of the extent of the surface of the solid; and (2) implicit, where
the surface of the solid is described by an analytic function such as a Coons patch, Bezier patch, B-spline, etc.
Hybrid systems such as the BRL-CAD Package9 also exist.

Irrespective of the specific representation used for a three-dimensional geometry and material data base, rarely
does an application code read that database directly. Rather, a specific interrogation method is invoked to pass
particular geometric and material attributes from a source or reference file to the -application code. Clearly the
nature of the physics employed in the application is both enabled and constrained by the -form-of the interrogation
process used.

In this paper, several examples of predictive radar codes are given, illustrating-several strikingly -dilferent ways
of linkin'! geometry to applications. Following those examples the interface methods-known-to the -authors will be
described. Many of the techniques have already been implemented; some are currently in development. In
addition, the utility of various techniques will be related to particular application codes.

2. CASE STUDIES IN PREDICTIVE RADAR MODELING

2.1 Examples of Synthetic Aperture Radar Imagery

Early radars were designed to estimate target range ap"- closing rates. For these systems, -the main parameter
of interest for a given target was Radar Cross-Section (ACS). The RCS figure represents-the efficiency with which
radar waves are scattered back to the-receiver. Certain modern radars, when-placed on-moving platforms such as
aircraft, can be used to form two-dimensional images of targets. Radar imagery of this -class -is called Synthetic
Aperture Radar (SAR). A description of an Armored Fighting Vehicle (AFV) has been- analyzed with a SAR
program10 (to be described below) and- the-results are shown in Figs. 1 and 2.

Figure 1, left-hand side, shows -the AFV as seen by the SAR radar from a -(350, 300) (Azimuth, Elevation)
orientation. A horizontal flight path (left to right) is assumed. The properties of SAR -processing are such that
following signal detection and manipulation an image is derived which resolves the-target in-range-and cross-range
(along the flight path) but not in the remaining orthogonal direction. Thus the final SAR image orientation is
similar to the optical rendering shown-in the right-h .nd side of Fig. 1.

t Recently, an initiative was made to consolidate- Radar- Cross Section (RCS) code development sponsored-by-the Tri-Services and NASA.
The Electromagnetic Code Consortium has chosen the geometry tools developed by the BRL as the basis for radar-codes to be-sponsored by
this group. See Ref. 8.

2



IN

...... .. .0 ...................

Figure k. On the left an optical image of an AFV P' ,strating the radar view of the target (350, 300)
for a s~nthetic aperture radar (SAR) simulation. The SAR is modeled as moding in the azimuthal
direction (elevation and range constant>/ On the right, complementary optical image to that shown
on the left, the apparent aspect is (U15°, 80° and is .iggestive of the SAR reconstructive process
when range is plotted against cross-range as in Fig. 2. (From Ref. 10)

Figure 2. Computed SAR image for target resolution of 10 inches. Left-hanld image is for 10 0hz,
Vertical/' Vertical (co-polarization transmit/ receive) modes; right-hand image is for Vertical,'
Horizontal (cross-polarizat1 )n transmit/ receive) modes. (From Ref. 10)

..... ..............



A-pair of SAR images for the AFV is shown in Fig. 2. Both images are computed for a target resolution of 10-
inches. The ,left, image is the result of a transmit Vertical, receive Vertical polarization mode; the right, -for a
Vertical/Horizontal polarization mode. In each of these images, the radar- signal is propagating from top down.
Range information is plotted along the ordinate and cross-range data along the abscissa.

2.2 The SRIM Code of ERIM

Simulated Radar IMagery (SRIM) is a high-frequency predictive radar code developed at the Environmental-
Research -Institute of Michigan (ERIM)." Early versions of the code used a geometry representation-sdieme for
-which no convenient editor existed, In 1983, ERIM linked its electromagnetics section of -SRIMto BRL's CSG-Rep
geometric modeling capabi!ity. BRL geometry is ,described in terms of Boolean combinations (intersections,
unions, differences) of primitive objects such is ellipsoids, c. :ders, and tori. Ray-tracing is -used to- extract
geometric information from the database. The ERIM-BRL link provides an easy means for generating geometry
descriptions through an excellent graphics editor and a natural geometry interrogation technique-for determining
ray path information. SPRIvi Tfollows ,the Geometric Optics (GO) paths of rays as they hit and reflect -from the
target surfaces. For each ray emanating from the radar a piecewise-linear path is traced- through the-gecmetry .nd
a-history is-recorded of hit-point coordinates, normal vectors, principal curvatures, principal curvature directions
and a flag designating whether or not line-of-sight exists to the radar. This geometric information-is then.,passed to
the electromagnetics portion, of the model. At each hit point along the ray path, the incoming illumination
wavefront is resolved- into parallel and perpendicular components, a complex Physical Optics (PQ) -field
contribution at the radar is calculated, taking into account the wavelength of the system and.this -contribution is
then resolved into its vertical and horizontal polarization components. SRIM is thus-able to determine the -P0
field- contributions- for -not- only first-surface illumination, but also for contributions due- to multiple bounces -along
the specular directions. If a total radar cross section is desired, this complex return is summed -into a total field
variable. If-a SAR image-is desired, the'location at which this contribution would appear-in-an image is calculated
and added to the appropriate range/cross-range bin. Image parameters. such as resolution, beam weighting -and
pixel size-are specified in a separate file.

If a vehicle on a ground plane is the object of interest, SRIM can generate- a clutter nodei for -the ground-
backscatter and- will properly represent the shadowing of the ground plane by the vehicle. infact, all -shadowing

effects-are correctly represented as a natural result of the ray-tracing paradigm used in=this simulation.

2.3 The SARSIM Code of Northrop

SARSIM is another high-frequency synthetic aperture radar simulation code. It wu- developed-at the -Northrop
Research and Technology Center. In this model, the radar images of the target-and- surrounding -backoroundare
-computed separately. In-a final step the two images are combined via processing which reflects appropriate- noise,
speckle and system-response values. For the geometric calculations an underlying -target representation of
triangular -plates is employed. For a given SAR resolution, each of the triangular plates-in the- target-description is
subdivided-into panels-whose contributions fall into a single SAR resolution bin. For each-of these -pancls-in -the
target description, a PO calculation is carried out to determine the contribution to the corresponding SAR
resolution -bin. This is also done for a Physical Theory of Diffraction calculation on the panel- edges. As-of 1987
only the specular (first surface) and diffraction contributions were considered in this model. A-simplifiedshadowing
algorithm eliminates any-panels partially obscured by other panels. Multiple -reflections -are not considei'edyet.

2.4 The TRACK Code of GTRI

Georgia Tech Research Institute (GTRI) has developed a radar prediction tool called TRACK. 13 The
geometry-used by TRACK is based on a subset of objects-supported by the GTRI MAX geometry editor. A-hybrid
-representation- of simple shapes such as ellipsoids, plates, frusta and special -radar-specific constructs such as
dihedrals and trihedrals are accepted by the TRACK code. TRACK has a series -of subroutines referred=-to as
CRO- .. h.Ich-calculalc-thc-,icld cont'ribution ofthe individual scattei erb in a "'M AX gcuiietly file. CROSS use5 PG
to calculate the fields for polygonal flat plates, right circular frusta, general ellipsoids, ogives and -toroids. A
combination of Geometric and Physical Optics is use to calculate the fields -for dihedral and -trihedral shapes.
CROSS also -predicts diffraction from straight and curved edges by methods of equivalent currents to avoid
problems associated with caustics. The returns from the individual scatterers can be summed- coherently,
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noncoherently, or retained in complex form- for postprocess ing. Shadowing is-handled by ignoring-all plates that
face.away from the radar and by excluding.from the electromagnetics calculations any scatterer that-is completely
obscured by other geometric elements. When an element is partially covered, the full energy of that element is
returned, which can- sometimes be-a source -of- error. For post-processing,,a file with scatterer types, location, size
and orientation is-generated. This can then-be used in numeroas scenarios, such as SAR, doppler-radar, and ISAR
(Inverse SAR).

2.5 Discussion-of Approaches

Each of the aforementioned high-frequency scattering codes required compromise. The choice of geometric
representation and interrogation method led to advantages and shortcomings. Choosiag a particular geometric
approach often- requires approximations in -the implementation of the physics of an analysis. Likewise, a particular
formulation o a physical analysis can force-the acceptance of a simplified and-less general geometry -representation
for the sake of getting some portion of the problem solved.

SRIM uses the information gathered by-ray-tracing to determine a scattered field. Fields are calculated locally
so that the ray-trace sampling density can- be chosen small enough to guarantee that each contribution to -the
scattered field- will lie in a unique resolution cell, a feature not guaranteed by the GTRI model. While the ray-
tracing technique is computationally intensive, the automatic shadowing and multiple bounce calculations are
attractive features. If two modeled surfaces are at a right angle to- each- other, the SRIM code -will calculate a
scattered-field -that is appropriate for a dihedral without requiring-the explicit designation of a dihedral- element in
the geometry -file. This approach does have the severe cost of requiring ray-tracing densities which :,re frequency
dependent, so-that the number of rays which must be cast at the target description for a; 94 GHz radar calculation
is on the order-of 100 times the number of rays needed at 10 GHz. Originally the code simply point-sampled the
field contribution at a location, but this approach suffered from aliasing problems due to under sampling high
spatial frequency -(fine detail) geometric elements. Improvements have-been made so that -the field- contribution is
integrated -over- a-planar approximation at -the -scattering surface, so that field -calculations are less-sensitive to ray-
trace sampling densities. Even so, with- a ray-tracing approach, one can still run the risk of -not adequately
sampling the- fine detail in the geometric -model, although increasing sampling densities with- ray-tracing- makes the
inter-ray sampling- distances arbitrarily small. It is possible to place an, upper bound on the size of geometric
objects that will -be under sampled; with knowledge about the distribution- of feature sizes-in thegeometry, the ray
spacing can-be chosen so as to make it-statistically unlikely to miss-any details.

Only PO fields are calculated for SRIM. Diffraction effects occurring at edges are not calculated -because the
ray-tracing -interrogation method does not provide the required edge -information. Some of the representational
schemes discussed- later will show how -this might- be accomplished with an alternate form for extracting
information-from the-model geometry.

One advantage of the SARSIM approach-to field calculations is-that integration takes place over each facet or
panel-in a- target description and all of the-modeled geometry is guaranteed-to be included in the calculation. SRIM
can not guarantee -this. Likewise, if one-has adopted a particular -resolution' cell size and subdivide&the-triangular
plates into panels appropriate for the- resolution cell size, there willbe-no increase in the number-of -panels for an
increase in the frequency of the radar. On the other hand, -in modeling the target with flat plates, one must
approximate any curved surfaces and thereby introduce some uncertainty about the fidelity of-the-geometry itself,
since flat plate -representations of curved--surfaces inti.duce edges where no-real edges exist. Thus, each edge must
be marked -by -the- geometry modeler, to indicate if the edge is an actual- edge, or a modeling artifact. For radar
diffraction- calculations this criterion must-be-used to trigger the inclusion- or-exclusion of edges.

Multiple reflections are not modeledAn SARSIM, so any radar signature dominated by -multiple bounces of
energy within -the target will- be poorly modeled. Many ground vehicles, especially tracked- vehicles, exhibit
dramatic dihedral and trihedral returns, making multiple-bounce considerations a primary concern. The use of
piecewise-linear target representations does lend itself to polygonal projection for determining -multiple path
interaction, -thereby avoiding ray-tracing. However, such an approach -introduces its own set of difficulties. These
techniques require significant computation -to find all the facet-to-facet "form factors". For a geometry with N
facets, a solution- to the global illumination- problem requires a system ofN-equations in N -unknowns-to be solved.



With most targets of interest the value of N is quite large, and performing Gaussian elimination on the N-by-N
matrix is often prohibitive.

The GTRI radar simulation provides highly accurate electromagnetic calculations for most of its primitive-
geometry types. Of the three models considered here, it-provides the most detailed calculations for certain simple
objects. For many modeling scenarios this approach gives excellent results. However, the technique for combining
these component field calculations for a complex geometric object fails to address some important issues. The basic
approach of modeling complex geometry with simple objects for which highly detailed electromagpetic field
calculation are known, has been used for many years. 14 For simple shapes, e.g. rockets, or for objects where a few
scatterers with wide spatial separation dominate the returns, this has been a highly successful technique. When the
target under consideration has non-convex complexity such as seen in a tank, the effects of multiple-reflection
scattering cannot be ignored. Although the GTRI model has dihedral and trihedral -geometric primitives to
account for some- multiple reflection scattering, the modeler must provide the information of how large and where
these objects should be. Even with this feature, multiple reflection paths may escape the- modeler's attention or be
of such complexity as -to be insufficiently modeled by dihedrals or trihedrals. To deal with this type of scattering
with a general-purpose code that does not require operator intervention, it would be necessary to appeal to another
geometric model of higher resolution to find the multiple reflection paths.

One other shortcoming of this method is the coarseness of the criterion for determining when one primitive
obscures or shadows- another. The GTRI method does-not sufficiently subdivide the scattering geometry, so that
full-power returns to the radar are considered to exist even when the scattering object is almost completely
obscured. Only when a primitive is totally obscured- is the electromagnetic scattering omitted from the field
calculation. Notice that -even if it were geometrically simple to determine what portion of a given solid is
obscured, this electromagnetics calculation method would not provide the field contribution from the partially
visible portion. Still--worse- problems arise for imaging-radar simulations if the scattering object is geometrically
larger than a resolution cell, since a given scatterer has only one field value and -that field value cannot be
distributed over more than one cell. This all-or-nothing -field calculation method is a- consequence of the physics
being constrained-by the-chosen geometry interface.

A geometric representation method and an interface-of that method to the scattering calculations have been
selected in each of the-three codes just discussed. These-choices clearly have advantages-and liabilities. Any code
requiring -eometric information will likewise be limited-in-some areas and enhanced in-others-by the choices of-the
geometric representation- and the interface of that geometry -to the analysis. Each- analysis code described so far
employs only one of -these -geometry/analysis code links, but significant benefits -miglit -be gained from analysis
codes that use two or more-of these interfaces simultaneously. Examples of the information that can be readily
provided from various-geometry representations and interfaces will be discussed in the following sections.

3. GEOMETRIC INTERFACES

In what follows a- number of methods are described- by which geometric and- material data are supplied -to
applications codes. Where possible, the interface methods developed and supported by -the BRL-CAD geometry
tools9 ' 15 will be used-to describe and illustrate these processes. A goal of BRL-CAD has been- to provide a general
and open analysis environment in which a variety of interrogation interfaces are supported so that diverse
application codes-can- be -driven from a single, unified -geometric model." The APPENDIX gives a brief overview
of the BRL-CAD modeling environment and some strategies-which have guided its development.

3.1 Ray-tracing

Rays begin at a point r, and-proceed infinitely in-a given direction given by the unit normal vectorVd. The
direction vector or direction cosines for the ray (Dx,Dy;D,)-are the cosines of the angle-between the ray and each of
the Cartesian axes. Any-point A on a ray may be expressed as a linear combination of V and by the formula

where valid values for-k are-in the range [ 0, 00].
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The traditional approach to ray-tracing has been batch-oriented, with the user defining a set of "viewing
angles", initiating a large batch job to compute all the ray intersections and then post-processing all the ray- data
into some meaningful form. However, the major drawback of this approach is that the application has no
immediate control over ray paths, making another batch run necessary for each level of reflection, etc.

In order to be successful, applications need: (1) interactive control of ray paths, to naturally implement
reflection, refraction and fragmenting into multiple subsidiary rays and (2) the ability to fire rays in arbitrary
directions from arbitrary -points. Nearly all non-batch implementations have closely coupled a specific application
(typically a model of illumination) with the ray-tracing code, allowing efficient and effective control of the ray
path.. The most flexible approach of all is to provide the ray-tracing- capability through a general-purpose library
and make the functionality available as needed to-any application. For example, the decision of when a ray should
be reflected, transmitted, or absorbed- should be entirely under the control of the application program. A set of
sample ray histories that might result from an application exerting-such interactive control is shown in Fig. 3.

3.1.1 RT Library Interface: The third generation ray-tracing:capability in the BRL-CAD Package is-a set of
library routines in -librt-to-allow application programs to intersect rays with model geometry. There are two parts
to the interface: "preparation" routines- and the actual ray-tracing-routine. rt-dirbuild() opens the databse-file
and builds the in-core database table of contents. rt-gettree0 adds a database sub-tree to the active model
space, and can be called-multiple times to join different parts of the database together.

To compute the intersection of a ray with the geometry in-the -active model space, the application- must call
rt-shootray0 once for each ray. Ray behaviors such as perspective, reflection, refraction, etc, are entirely
determined by the applications program logic, and not by the -ray-tracing library. The ray-path -specification
determined by the applications -program is passed as a parameter-to-irt.shootray 0 in the application structure,
which contains five major -elements: the vector a-ray.rpt 11) which is the starting point of the ray, -the vector
a-ray.rdir (5) which is-the-unit-length direction vector, the-pointer-*a.hit 0 to an application-provided-routine to
be called when some- geometry is hit by the ray, the pointer *a-miss0 to an application-provided routine-to be
called when the ray- does-not hit-any geometry, and the variable a-onehit. In addition, there are various- locations
for applications to- store- state information such as recursion level, intermediate color values, and cumulative-ray
distance.

When the a-onehit Variable is set to zero, the ray is traced -through the entire model. Applications such as
lighting models may often- only be interested in the first object hit; in-this case, a.onehit may be set to the-value
one to stop ray-tracing as-soon as the ray has intersected-at least-one-piece of-geometry. Similarly, if-only'the first
three hits are required- (such as in the routine that refracts light through glass), then a-onehit may 'be given the
value of three. Then, at -most three hit points will be returned, an in-hit, an out-hit and a subsequent in-hit.
When only a limited -number of intersections are required, the -use-of this flag can provide a significant savings in
run-time.

The rt-shootrayo--function is designed for full recursion so'that the application provided a-hitia..miss0
routines can themselves fire additional rays by recursively calling r.hootray0 before deciding-their -own- return
value. In addition, the -function- rtshootray( is fully capable-of operating in parallel with other -instances of
itself in the same address-space, allowing the application-to-take advantage of parallel hardware capabilities-where
such exist.

3.1.2 Sample RT Application: A simple application program- that fires one ray at a model and prints the
result is included below, -to-demonstrate-the simplicity of the-interface-to ibrt.
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struct application- ap;
maino (

rt-dirbuild("model.g");
rt-gettree('car");
rt-prepo;
VSET( ap.6.point, 100, 0, 0);
VSET( ap.adir, -1, 0, 0);
ap.a.hit = &hit-geom;
ap.amiss -&miss..geom;
rt-shootray( &ap-);

}
hit-geom(app, part)
struct application *app;
struct partition *part;{

printf("Hit %s", part- >pt_forw->pLregionp- > reg.name);I
miss-geomo{

printf(WMissed");I
3.1.3 Ray Intersection Data: If a given ray hits -some model geometry, the a-hit 0 routine is called and is
provided a-pointer-to-the head-of a-doubly-linked list of partition structures. Each partition structure contains
information about a line segment along, the ray; the partition has both an "in" (ptlinhit) and an "out"
(pt-outht)-hit -point. Each hit point is -characterized -by- the hit distance hit-dist, which is the distance-k from
the starting point r-pt along the ray to the hit point. The linked list of partition structures is sorted by
ascending values of hit-dist. As-a result-of this definition, -the="line-of-sight" distance-between any two hit points
can be determined simply by subtracting the two- hit.dist values. This will give the distance between the =hit
points, in millimeters.

If the variable a-onehit was -set -non-zero, then- only -the first a.onehit hit points along the partition- list are
guaranteed to be correct; any additional hit points provided should be ignored,. This is usually important only
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when a..onehit was set to an odd number; in this case the value of pt-outhit in the last- partition structure may
not be accurate and-should-be ignored.

If the actual 3-space coordinates of the hit point are required, they can be computed into the hit-point
element with the C-language version of =' + k* :

VJOIN1( hitp->hit-point, rayp->rpt, hitp->hit-dist, rayp->rdir);

3.1.4 Surface Normals: As an efficiency measure=only the hit distances are computed-when a ray is intersected-
with the model geometry. For any hit point, the-surface normal at that point-can-be easily acquired by executing-
the C macro:

RTHITNORM(-hitp, stp, rayp);

In addition to providing the unit-length outward-pointing surface normal in struct hit-element hit-normal, this
macro also computes the 3-space coordinates of the-hit point in struct hit element hit-point.

3.1.5 Gaussian Curvature: For any hit point, after the surface normal has been computed, the Gaussian
surface curvature at that-hit point can be acquired-by executing the C macro:

RTCURVE( curvp, hitp, stp);

At the hit point, there exists exactly one pair of orthogonal -directions also orthogonal- to-the surface normal-l4 for
which the values -of c take on the minimum and maximum values ci and c2. cl and- c2 are the inverse -radii of
curvature and Ic:I Ic2!, i.e. ci is the most -nearly- flat principle curvature. A positive curvature indicates that-the
surface bends toward-the (outward pointing) normalvector" at the hit point. -Acurvature structure has three
elements, the -unit vector crv.pdir (or A) pointing -in the direction of the first -principle curvature, the scalar
crycl (or cl) giving the curvature in the first -principle direction and the scalar -crvyc2 (or c2) giving the
curvature in the second principle direction A. The second principle direction -9is implied and can be found by
taking the cross product of the normal with crv-pdir, i.e., ---q X .

3.1.6 U-V Mapping: Each primitive solid can -be considered to be bounded- by -one -or more regular surfaces.
Each regular surface-is defined as the locus of points Su,v) depending on two-real~parameters u and v which range
from 0.0 to 1.0 -inclusively. These parameters form-the- coordinates of a two-dimensional -Cartesian u,v-plane. A
given (u,v)- coordinate will-appear only once-on each-regular surface, but in objects with-more than one surface that
same (u,v) pair may-appear at more than one- place on-the object. The (u,v) coordinate of the hit point is returned-
in uvcoord structure elements uvu and uvv. For any hit point, after the -value of hit-point has been
computed, the (uv) coordinates of that point can-be-acquired by executing the-C macro:

RTHITUVCOORD( ap, stp, hitp, uvp );

For some simple optical rendering applications , it is sometimes desirable to create a mapping between -the
coordinate system on the surface of an object-to-coordinates on a plane. This-is generally used to drive simple, two
dimensional texture- mapping algorithms. The most common application is -to extract a- "paint" color from a
rectangular imagefile-at coordinates (u,v), and -apply-this color to the surface of an-object. These parameters can
also be used- to-simulate the effect of minor surface roughness using the bump mapping-technique. Here, the u-andyV
coordinates index -into- a -rectangular file of -perturbation angles; the surface normal-returned-by RT-HITNORMO
is then modified by up to ±90 degrees each-in both the-u and v directions, according-to the stored perturbation.

In addition, the--approximate "beam coverage" of the ray in terms of the parr -etersc(u,v) is returned in-the
structure -elements uv.du and- uv.dv. These- approximate values are -based upon the ray's initialbcain -radius
(a-rbeam) and-beam divergence per millimeter (a-diverge) as specified in the application-structure. These delta-u
and delta-v values- can-be helpful for anti-aliasing-orfiltering areas of the original texture map to produce an "area
sample" value-for the,hit point.
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3.2 Topological Representation

Some predictive radar signature codes, such as the TRACK code of GTRI discussed above, do not operate
directly on a solid geometric representation -of an- object. Instead, they rely on the fact that large radar returns
occur primarily due to the existence of dihedral and trihedral structures in the object. Rather than-describing a-
vehicle simply as a collection of these topological structures, one can analyze a three dimensional solid model to
locate all instances of the topological features of interest. For example, the software could locate planar face
elements, edges where two locally planar elements join to make a dihedral, edges where three locally planar
elements join to make a trihedral, etc. Then this list of-topological features becomes the input to the feature-based
analysis code.

Due to the rather broad set of possible interpretations of the term "feature", each kind of topological feature
extraction is itself considered an application program and, therefore, is not a standard part of the interrogation
library. The process of topological feature extraction is currently programmed using the ray-tracing interrogation
features described above.t

3.3 3-D Surface Mesh

Combinatorial Solid Geometry (CSG) -models are formed by the boolean combination of "primitive" solids.7

For example, a plate with a hole is most easily modeled as a plate primitive minus a cylinder primitive. It is
important that in CSG models, there is no explicit representation of the surfaces of the solids stored; indeed, for
complex boolean combinations of complex primitives, some of the resultant shapes may have very convoluted
topology and surfaces that may be at best high degree polynomials.

There are many applications that would benefit -from being able to express an approximation of these complex
shapes created using CSG modeling as a collection of planar N-sided polygons (N-gons) which together enclose
roughly the same volume of space as the original OSG solid. The most obvious such application- is -to drive
polygon-based rendering routines (lighting -modules) -for predictive optical signatures. On many modern
workstations there is direct hardware or firmware support-for high-speed rendering of polygons. In addition, there
are whole collections of polygon-based- predictive infrared and radar signature programs. Some of the most
accurate radar signatures have been calculated- using the Method of Moments.17 This approach requires- a three
dimensional surface tessellation to sub-wa-,elength-resolution over-an entire geometric model.

A sen~sible strategy for converting-a CSG model-to the equivalent approximate three dimensional -surface mesh
is-to tackle the problem in two parts. First, a routine has- to -be written to convert each of the primitivecsolids into
tessellated form. Second, a routine -has- to be written to take two tessellated objects and-combine themnaccording
to a boolean operation (union, intersection- or subtraction) back into a consistent set of solid tessellated- objects.
-Until very recently, this second step has proven-extremely difficult. The topology of solid tessellated-objects-has
traditionally been represented using the "winged-edge" data-structure. Within the winged-edge representation, an
edge represents the boundary or intersection- between exactly two faces. Unfortunately, this structure -fails to
handle other valid configurations, such as an-edge-being shared by four faces, or an edge being -part-of only a-single
("dangling") face. These other configurations arise when the topology of an object is not that of a simple 3-
-manifold, i.e. when the topology of -the object--can not be mapped to a sphere. These non-3-manifold-conditions
arise in the construction of finite element meshesand from the use of the boolean intersection operation-

The inability of the winged-edge data structure to represent non-3-manifold configurations resulted- in the18,19
development of a more general data -structure 11. This new data structure has been dubbed- alternately -the
"radial-edge", "Non-Manifold Geometry" (NMG), or "n-Manifold Geometry" data structure. The- radial-edge
representation provides topological links-between all-faces which share an edge. This single representation -has-the
ability to handle n-manifolds (Mn) for-O < n <'3: 3-manifolds (solid objects), 2-manifolds- (lone faces, not-part-of-a
solid), 1-manifolds (lone edges, not part of a face) and-0-manifolds (lone points, not part of an edge).

t See Ref. 5, Figs. 8 and 0.
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Consider the intersection of two solids that share only a single face, edge, or vertex. The result of the
intersection will be a manifold object of dimension less than three. The winged-edge data structure is unable to
represent these boolean results, because it requires every edge to adjoin exactly two faces. Thus, the-winged-edge
representation is not closed under boolean operations. To overcome this lack of closure, winged-edge systems
substitute regularized boolean operators which are defined to produce only 3-manifold results; all- lesser dimension
results -are discarded. In contrast, because all manifold objects of dimension less than three can be represented
using-the NMG data structures, NMG objects are closed under boolean operations.

Employing the NMG representation for faceted solid objects gives rise to the rich set of possibilities diagramed
in Fig. 4. From this diagram it should be clear that the final evaluated NMG solid object can-be employed in a
variety of ways. The primary use will be for input to analysis codes that need an approximate 3-D surface-mesh of
the solid model. In this case, the NMG objects are sent across the interface, either directly into an-application, or
via a triangulator that turns the planar N-gon faces of the NMG objects into simple triangle lists and-thence to
applications such as SARSIM. However, a very powerful second use will be to create-new faceted shapes which are
then stored back in the database as new geometric objects, suitable for future editing or analysis.

While a detailed description of the NMG data structures is beyond the scope of this paper, ° there are, several
advantageous properties of the NMGs that are worth mentioning. The NMG representation maintains full
topology information, so that the relationships between vertices, edges, loops, faces and shells are continuously
available. The geometry information associated with a planar face is the plane equation -(which includes the
outward-pointing surface normal); the plane equation does not have to be re-derived from the vertices. For
applications that would prefer visual realism rather than geometric fidelity, there is room in the vertex geometry
structure to carry around a "phony" normal for each vertex, suitable for intensity interpolation shading
algorithms used in Gouraud shading,2 1 or for normal-vector interpolation shading algorithms.

One of the most exciting current research projects at BRL is the extension of the NMG -framework to permit
faces either to be planar N-gons, or trimmed Non-Uniform Rational B-Splines ("trimmed NURBS"). This-will
permit many of the tessellation operations to be implemented exactly, rather than as approximations. This will
also permit solids to enjoy the economy of having most faces be represented as planar N-gons, which are very
compact and efficient to process, while those few faces that require sculptured surface shape control can be
represented as trimmed NURBS. This combination provides both efficiency and fuli shape controln the rich n-
manifold topological framework; a combination that does not exist in-any current commercial CAD system.

3.4 3-D Volume Mesh

Many forms of energy flow analysis, such as heat flow, vibrational analysis (acoustic energy flow), and stress
analysis require the use of 3-D Finite-Element Mesh (FEM) techniques. While there- has been some work on using
the ray-tracing- paradigm to construct finite element and finite difference meshes22 it has becn difficult to-deal with
high spatial frequency (fine detail) portions of the model. In particular, meshing small- diameter pipes is
problematic; undersampling can cause the pipe to incorrectly be separated into multiple pieces.

In order to improve on the current state of affairs, it seems necessary to provide support for the generation of
volume meshes directly as part of the application interface. This would provide the meshing algorithm to have
unrestricted access to the underlying geometry, the space partitioning tree, and other internal data in order to
perform a better job.

Even more promising still would be a strategy that takes advantage of the NMG-support. A first-pass might
tessellate the model and evaluate the booleans to produce a surface mesh. The second pass-would-then take-the
surface mesh and fill the interior (or exterior) volumes with appropriately chosen volume elements. A verygbod fit
could- probably be achieved using only parallelepiped ("brick") elements and 20-node "superelements". The-brick
elements would be used to fill interior volume that does not border on a face, and the superelements would be used
for volume that contacts a face. Recourse could be made back to the underlying geometry (perhaps viamfiring a few
wel chosen rays) to get the curvature of the superelement faces to match- the curvature of the, underlying
primitive, rather than having to rely strictly on the NMG planar-face approximation.
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Figure 4. Logic flow for n-Manifold Geometry (NMG) processing.

3.5 3-D Volume Elements (Voxels)

A representation which is similar to-the finite-element mesh is based on Volume-Elements (VOXELS). There
are two distinct kinds of voxels. The first kind of voxels can be considered a- special case of volume meshing
discussed previously, in which the model-is "diced" into-a large collection of-homogeneous parallelepiped,("brick")
elements. As one example, ERIM has a .uility program- which uses ray-tracing to convert BRL CSG-format
geometry -to-this kind of voxel representation to feed a-first-principles IR model. 3 -In contrast to the ERIM's voxel
modeling approach, the Physically Reasonable Infra-Red. Signature Model (PRISM) predictive IR code, developed
at the Keweenaw Research Center, iszbased on a geometry-of, flat plates.24 Two codes-linking the BRL OSO-format• 5 -•26
geometry to PRISM have been developed: the TACOM FRED-editor and-the BRL-irprep program.

A distinctly different form of voxel -representation is -based upon the use of -8-way binary space subdivision
stored using an "oct-tree" data structure. In this technique, the model -is enclosed in a bounding box. The
bounding box is evenly split along- the X, Y and Z axes -to- form -eight smaller boxes. This algorithm -is- applied
recursively so-that all boxes which are neither entirely full-nor entirely empty are-repeatedly split, until'the-size of
the voxels-satisfies some termination- condition. In this-way, small voxels that-lie -along the surface of objects can
fit arbitrarily tightly to the surface, While the interior of an isomorphic region will- be contained primarily in a
single large voxel.

The oct-tree representation provides the application- program with a homogeneous geometric representation
based entirely on- cubes of varying size. Having such a homogeneous representation can often greatly ease- the task
of algorithm- development. On the- other hand, achieving a good approximation -of curved objects using -cubes
requires a huge number of voxels to-be used, resulting in very large voxel datasets, and an exponential increase
(order NO)- in the number of element-to-element equations- to-be solved. The-oct-tree approach to IR signature
generation- is employed in the BRL-OAD-)program lgt.
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3.6 Homogeneous Trimmed B-Splines

When support for trimmed NURB-faces- has been added to the NMG capability,-it will be possible to represent
all existing primitives either with exact rational B-spline versions, or with very good rational B-spline
approximations. This could -be-done even for.faces that were completely planar.

This offers the hope that -it might be possible (albeit memory intensive)-to convert an entire CSG solid model
into a homogeneous collection-of non-uniform rational B-spline faces organized in a--n-manifold topological data
structure. In addition to the conceptual simplicity afforded by having a uniform- representation for shape, this
affords the opportunity to create new analysis codes that can process curved- surfaces, yet at least initially only
have to deal with one kind of shape. This would also provide a very direct- and natural interface to spline-based
and Bezier-patch 28 based modeling systems.

3.7 Analytic Analysis

Given a homogeneous geometric representation such as the Trimmed B-Splines just discussed which also has an
analytic representation, a further processing capability arises. Rather than -interrogating the data base by means
of sampling or subdivision techniques, the direct mathematical manipulation- of the source geometry through its
parametric representation becomes -possible. Calculations of physical properties requiring integration over a surface
can often be evaluated with greater accuracy using an explicit analytic calculation than could be provided by
numerical methods. While this-may be difficult in general due to the complexity of a parametric expression, some
classes of surface representations may be good candidates for this approach. Splines, for example, are piecewise-
polynomial functions which have -relatively simple Fourier transform representations. Since 2-D spatial Fourier
transforms arise frequently- in-far-fieldelectromagnetic scattering calculations,-exploitation-of the parametric spline
form is of interest in predictive scattering calculations. Direct use of spline-par.meters in a PO scattering model is
part of the methodology used-atthe Aircraft Division of The Northrop Corporai,ion.29

Support for this tack may -be inferred from the work of Schneider and Peden who have exploited analytic
methods for calculation of radar-cross sections using dielectric ellipsoids 3°inthe- detection of buried targets. 3 1 Here
the approach involves the approximation of the geometry of interest with a shape for-which the analytic solution of
the electromagnetic scattering problem can be solved. Great care must be taken to insure that the errors
introduced by the geometry are- a- small- perturbation of the desired solution.

With the rapidly developing pote :al of symbolic calculation, treatment of seemingly impossible formulas
resulting from the geometry/physics ir'eraction may become tenable. This-could help-to- reduce the trend towards
employing numerical methods at the onset of a problem and avoid some of the accompanying instabilities and
errors.

4. SUMMARY

In this paper we have discussed:someissues basic to the prediction-of signatures in-support of-Automatic Object
Recognition, in particular the way -in which three-dimensional geometry and--material data are linked to certain
applications. This point -was illustrated via a discussion of three predictive -radar codes, each designed for
essentially the same application, but each- nevertheless employing unique geometric methods. The descriptive
approach and the manner -in- which -each is linked to the physics of the- codes-has -been shown to both enable-and
constrain algorithmic exploitation.

The methods for linking geometry -to applications codes were described in turn. The BRL-CAD package was
used to illustrate each approach. As-described in the APPENDIX ,the-strategy utilized in BRL-CAD is based on
an inhomogeneous collection -of closed-surface geometries, of which the variety of shapes is constantly expanding.
By this tack, in addition-to-using geometry files created with BRL-CAD,-three;dimensional geometry files that were
developed under other systems- can either be mapped into the BRL-CAD data base exactoy (if the corresponding
geoimetric forms already -exist) or-the;data-base can be extended to support any -important-new forms (so that the
conversion becomes an exact mapping as well). By this method the enormous-costs-of-geometry generation can be
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recovered; any model developed on a true-3-D modeling system can be 'transferred through file importation- to the
general and open environment of BRL-CAD.t

Another important point that was emphasized was thepossible utility of each particular intirface. A related
goal, therefore, of BRL-CAD has been tozapport all- such interfaces from the extensible data base of geometry,
types. Many of the forms have been implemented; the NMGs which will provide homogeneous polygon supportare
in the final stages of development.

By these developments it is our intent to support theAOR community to the maximum-,extent-possible with
the tools needed to develop the multi-spectral,-multi-sensorsimulations critical to autonomous-sensor -applications.

APPENDIX

The solid modeling package called BRL-OAD9"15 was originally developed to support the input-requirements-of
vulnerability and lethality modeling at the-Ballistic Research Laboratory. Its capabilities are briefly summarized
here:

" BRL-CAD is composed of more than-200,000 lines of portable C language source code which support:
o Solid geometric editor (mged)
O Ray tracing utilities
O Lighting models for a variety of frequencies
o Many- image-handling, data-comparison, inage-processing and other supporting utilities

" The set of closed-surface (inhomogeneous) geometrical representations supported by BRL-CAD-include:
o The original Constructive Solid Geometry (CSG) BRL data base
0 Non-Uniform Rational B-Spline Surfaces (NURBs)
O The faceted data representation -(PATCH), developed by Falcon/ Denver Research -Institute and -used -by -the

Navy and Air Force for vulnerability calculations.

" It supports association of material (and- other attribute properties) with geometry which- is critical- to
subsequent applications codes.

" It supports a set of extensible interfaces-by means of which geometry (and attribute data) are -passed to
applications:
0 Ray casting
3 Topological representation
3 3-D Surface Mesh Generation-
o 3-D Volume Mesh Generation
O Analytic (Homogeneous Spline) representation-

* Source code for BRL-OAD has been distributed to more than 650 computer sites world wide -throughout
Government, Industry and Academia.

" In addition to the vulnerability and signature-codes-generated by the BRL, many BRL-CAD -based applications
codes have been built by others, including applicationsdeveloped by workers at TACOM/ Keweenaw Research
Center, ERIM, Northrop, MITRE, University -of Illinois-and scores of other sites.

Figure Al gives a general layout of the BRL-OAD database representation. A number of fundamental
strategies are key here. First, the primary data base is inhomogeneous; that is, many types- of geometric
representations.are allowed so long as they represent-fully enclosed space. New shapes are added-to the-geometric

t An important -caveat here is that the-mathematical formof-the-geometric representation and data base to beimported must-be-known.
Unifortunately, most commercial CAD- vendors-are unwilling to provide-this-information for filesgenerated-by their systems, iince that
might free the user from "vendor lockin".
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data base from time to time and the BRL-CAD package has a number of utilities written expressly to aid that
process.

.Second, specific interface standards have been adopted at the points where geometry is normally passed to
applications (e.g. ray casting, topology, surface mesh). By this strategy changes which take place in the geometric
data base itself are isolated from the specific means of geometry linkage. By means of this strategy both (a) an
extremely large primary data-base of geometry types can be supported in a data-storage efficient fashion and (b)-
various application codes can link to that data base-in the manner most-suitable for the application.

As noted above, although the original application of BRL-OAD was in-support of vulnerability and lethality
analyses, its utility has been extended much beyond those applications. -7,10,1 A graphical depiction of current
uses is given-in Fig. A2.
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6 Institute for Defense Analyses (IDA) 5501- Backlick Road

ATTN: Mr. Irwin A. Kaufman Springfield, VA 22151
Mr. Arthur 0. Kresse
Mr. Arthur Stein 1 Adelman Associates
Dr. Lowell Tofinessen ATTN: Herbert S. \Veintraub
Mr. Benjamin W. Turner 291 North Bernardo Avenue
Ms. Sylvia L. Waller Mountain View, CA 94014-5205

1801 N. Beauregard Street
Alexandria, VA 22311 2 Advahced Marine E' rprises

ATTN: James F. Hess
Institute for Defense Analyses CPT Frederic S. Hering USN.(Ret)-
ATTN: Carl F. Kossack 1725 JeffersonDavis Highway
1005 Athens Way Suite 1300
Sun City, FL 33570 -Arlington, VA 22202
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1 The Armed Forces -Communications and I Alliston Gas Turbine
Electronics Association Division of GM

ATTN: Kirby Lamar, -BG(Ret)- ATTN., Mich ael, Swift
4400 Fair Lakes Court -PO Box 420, SC S22B
Fairfax, VA 22033-3899 Indianapolis, IN 46260-0420

2 Aero Corporation 1 Aluminum Company of America
ATTN: David S. Eccles ATTN: Frank W. Baker

Gregg Snyder Alcoa Technical Center
P.O. Box 92957, M4/913 Alcoa-Center, PA 15069

Los ngel s, A 90 09 Analysis and T -chnology
I AFELM, The Rand Corporation ATTN: RADM Thomas M. Hopkins USN

ATTN: Library-D (Ret)
1700'Main S~reet -1113 Carper Street
Santa Monica, CA 00406 McLean, VA 22101

2 Air Force Wright Aeronautical-Labs 1 ANSER
ATTN: CDJ, CPT Jost ATTN: James W. McNulty

CDJ, Jo seph -Faison 1215 Jefferson Davis Highway
Wright-Patterson AFB, OH 45433-6523 Arlington, VA 22202

I Alliant Computer Company 1 ARC C-500
ATTN: David Micciche ATTN: John H. Bucher
1 Monarch Drive Modena-Road
Littleton, MA 01460 Coatesville, PA 19320

I Alliant Techsystemns, Inc. I Armament Systems, Inc.
ATTN: Hatem Nasr ATTN., Gerard'Zeller
Systems and ResearchCenter -P.O. Box 158
3660 Technology Drive 211 West Bel Air Avenue
P.O. Box 1361 Aberdeen, MD 21001
Minneapolis, MN 55418

Inc.1 Armored Vehicle Technologies-
1 Alliant Techsystems, In.ATTN: Coda M. Edwards

ATTN: Fred J. Parduhn P0 Box 2057
7225 Northland-Drive Warren, MI 48090
Brooklyn Park, MN 55428-

1 ASI Sytems, International
2 Alliant Techsystems, Inc. ATTN: Dr. Michael Stamnatelatos

ATTN: Raymond-H. Burg 3319 Lone Jack Road-
Laura C. Dillwvay Encinitas, CA 92024

MN38-4000
-. 10400 Yellow Circle Drive I Auburn University

- - Minnetonka,-'MN 55343 Electr cal Engin e in -Depa~t

ATTN: Dr. Thomas Shumpert
Auburn University, AL 36849
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A.W. Bayer and Associates 3 BMY, Division of Harsco
ATTN: Albert W. Bayer, President ATTN: William J. Wagner, Jr.
Marina City Club Ronald W. Jenkins
4333 Admiralty Way Ed:Magalski
Marina del-Rey, CA 90292-5469 POBox 1512

York, PA -17404
Battelle Research Laboratory
ATTN: TACTEC Library (J.N. Huggins) 1 Board on Army Science and-Technology
505 King Avenue National Research Council
Columbus, Ohio 43201-2693 Room MH-280

2101 Constitution Avenue, N\V
Battelle Research Laboratory Washington, DC 20418
Defense and-Space Systems Analysis
ATTN: Dr. Richard K. Thatcher 2 Boeing Aerospace
505 King Avenue ATTN: Dr. Robert Chiavetta
Columbus, Ohio 43201-2693 Dr. John Kuras

Mail Stop 81(17
Battelle Research Laboratory P.O. Box 3999
ATTN: Bernard J. Tullington Seattle, WA 98124-2499
1300 N. 17th Street, Suite 1520
Arlington, VA 22209 2 Boeing Corporation

ATTN: MS-33-04, Robert Bristow
3 Battelle MS-48-88, Wayne Hammond

Edgewood-Operations P0 Box-3707
ATTN: Roy Golly Seattle, WA 98124-2207'

Gene Roecker
Robert Jameson I Boeing-Vertol Company

2113 Emmorton Park Road A.Division ofrBoeing Co.
Edgewood, MD 21040 ATTN: MS-P30-27, John E. Lyons

P0 Box--16858
The BDM Corporation Philadelphia, PA 19112
ATTN: Edwin J. Dorchak
7915 Jones Branch Drive I Booz-Allen and Hamilton, Inc.
McLean, VA 22102-3396 ATTN: Dr. Richard B. Benjamin

Suite 131, 4141 Colonel Glenn H'wv.
The BDM Corporation Dayton, OH 45431
ATTN: Fred J. Michel
1300 N. 17th Street 1 Booz-Allen and -Hamilton, Inc.
Arlington, VA 22209 ATTN: -Lee-F. Mallett

1300 N. 17th Street, Suite 1610
Bell Helicopter, Textron Rosslyn, VA 22209
ATTN Jack R. Johnson
P0 Box 482 2 Booz-Allen -and Hamilton, Inc.
Fort Worth, TX 76101 ATTN: John M. Vice

WRDC/FVS/SURVIAC
BldgAS,5AreaJB.
Wright-Patterson AFB, OH

45433-6553
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John Brown Associates 2 Cypress International
ATTN: Dr. John A. Brown ATTN: .August J. Caponecchi
PO Box 145 James Logan
Berkeley Heights, NJ -07922-0145 1201-E. Abingdon-Drive

Alexandria, VA 22314
Chamberlain
ATTN: Mark A. Sackett I DATA Networks, Inc.
PO Box 2545 ATTN: William E. Regan, Jr.
Waterloo, IA 50704 President

288 Greenspring Station
Commander Brooklandville, MD 21022
Combined Arms Combat Development
ATTN: ATZL-CAP-(LTC Morrison) J DNA

Dir, Surv Task Force ATTN: LCDR Charles-Nofziger
Ft. Leavenworth, KS 66027-5300 6801 Telegraph Road

Alexandria, VA 22310
Commander
Combiped Arms Combat Development, 1 Datatec, Inc.
ATTN: ATZL-HFM-(Dwain Skelton) ATTN: Donald E. Cudney
Ft. Leavenworth, KS -66027-5300 President

326 Green Acres
1 Computer Sciences Corporation Fort Walton, FL 32548

200-Sparkman Drive
Huntsville, AL 35805- 1 David Taylor Research-Center

ATTN: Dr. Fred J.-Fisch
3 Computervision Corporation 2203 Eastlake Road,

ATTN: A.'Bhide Timonium, MD 21093-5000
V. Geisberg
R. Hillyard- 1 David Taylor Reseairch- Center

201 Burlington Road ATTN: Robert E. Fuss
Bedford, MA 01730 UERD, Code 177

Portsmoutn, VA 23709-5000
Cray-Research, In-c.

ATTN: William W.Kritlow 1 David Taylor Research-Center
P.O. Box 151 ATTN: Seymour N. Goldstein
Huntington BeachCA 92648-0J51 Code 1210

Bethesda, MD 20084-5000
CRS-Sirrine, Inc.
ATTN: -Dr. James C..Smith 1 David Taylor Research Center
PO-Box 22427, ATTN: Ib S. Hansen,
1177 West Loop-South Code 174
Houston, TX 77227 Bethesda, MD 20084-5000

CSC 1 David Taylor ResearchLCenter
ATTN: Abner W. -Lee ATTN: Harry PriceGray
200:Sparkman Drive Code 1740.4
Huntsville, AL 35805 Bethesda, MD 20084-5000
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David-Taylor Research Center I University of Dayton
ATTN: Jackson T. Hawkins Graduate Engineering and Research
Code 1740.2 Kettering Lab 262
Bethesda, MD 20084-5000 ATTN: Dr. Gary Thiele, Director

Dayton, OH 45469
David Taylor Research Center
ATTN: Steven-L. Cohen 1 Defense Nuclear Agency
Code 1230 StructuralDynamicsSection-
Bethesda, MD 20084-5000 ATTN: Tom Tsai

Washington, DC 20305
David Taylor Research Center
ATTN: Dennis Clark I Delco Systems Operation
Code-0111 ATTN: John Steen
Bethesda, MD 20084-5000 6767 Hollister Avenue, #P202

Goleta, CA 93117
David Taylor Research Center
ATTN: John R. Krezel 1 Denver Research Institute
UERD, Code 177.2 Target Vulnerability and -Survivahiliy
Portsmouth, VA 23709-5000- laboratory

ATTN: Lawrence G. Ullyatt
David-Taylor Research Center POBox 10127
ATTN: Richard E. Metrey Denver, CO 80210
Code 01
Bethesda, MD 20084-5000 1 Denver-Research Institute

University of Denver
David-Taylor Research-Center ATTN: Louis E. Smith
ATTN: Dr. Paul C. St. Hilaire University Park
-Code 1210 Denver, CO 80208
Bethesda, MD 20084-5000

1 Dow Chemical, U.S.A
David- Taylor Research -Center ATTN: Dr. P. Richard Stoesscr
ATTN: Arthur Marchand Contract R&D
Code-2843 1801 Building
Annapolis, MD 21042 Midland, MI 48674-1801

David Taylor Research Center 1 Drexel University
ATTN: Michael Riley ATTN: Dr. Pei Chi Chou
UERD, Code 177 College-of Engineering
Portsmouth, VA 23709,5000 Philadelphia, PA 19104

David Taylor Research Center 1 DuPont Company FPD
ATTN" J. William Sykes ATTN: Dr. Oswald R. Bergmaiinn-
Code -75 B-1246, 1007 Market Street
Bethesda, MD 20084-5000 Wilmington, DE 19898-

DaviddTaylor Research Genter

ATTN: Herbert Wolk
Code 1740.1
,Bethesda, MD 20084-5000
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Dynamics Analysis and Test Associates 1 USA-ETL/IAG
ATTN: Dr. 0. Thomas Savell ATTN: Jim Campbell
2231 Faraday Ave Bldg 2592, Room S16
Suite'103 Ft. Belvoir, VA 22060-5546
Carlsbad, CA 92008

1 FMO Corporation
E. I. Dupont TED FMC ATTN: Sidney Kraus
ATTN: Richard 0. Myers Jr. 1105 Coleman Ave, Box 1201
Wilmington, DE 19898 San Jose, CA 95108

Eichelberger Consulting Company 3 FMC Corporation
ATTN: -Dr. Robert-Eichelberger ATTN: Ronald S. Beck

President Martin Lim
409 West Catherine Street Jacob F. Yacoub
Bel Air, MD 21014 881 Martin Avenue

Santa Clara, CA 95052
Electronic Warfare Associates, Inc.
ATTN: William V. Chiaramonte 5 FMC Corporation
2071 Chain Bridge-Road Advanced Systems-Center (ASC)
Vienna, VA 22180 ATTN: Charles A. Millard

Scott L. Langlie
Emnprise, Ltd. Herb Theumer
ATTN: Bradshaw Armendt, Jr Walter L. Davidson
201 Crafton Road J.E. Alexander
Bel-Air, MD 21014 1300 South Second-Street

POBox-59043
8 Environmental Research -Institute of Michigan Minneapolis, MN 55459

ATTN: Mr. K. Augustyn
Mr. Kozma 2 FMO-Corporation
Dr. I. La Haie Defense Systems-Group
Mr. R. Horvath ATTN: Robert Burt
Mr. Arnold Dennis R. Nitschke
Mr. E. Cobb 1115 Coleman Avenue
Mr. B. Morey San-Jose, CA 95037
Mr. M. Bair

PO-Box 8618 1 FMC Corporation
Ann-Arbor, MI 48107- Naval Systems Divisionc(NSD)

ATTN: MK-45, Randall Ellis
E-OIR Measurements,-Inc. Minneapolis, MN 55421
ATTN: Russ Moulton
PO-Box 3348, College-Station 1 FMC Corporation
Fredericksburg, VA 22402 Northern Ordnance:Division

ATTN: M3-11, BarryBrown
ERIM 4800 East River-Road
ATTN: Stephen R. Stewart Mifineap9lis, MN 55421
Exploitation Applications-Department
Image Processing Systems Division-
POBox 8618
Ann Arbor, MI 48107-8618
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6 FMC Corporation 1 General Dynamics Land Systems
Ordnance Engineering Division ATTN: Dr. Paulus Kersten
ATTN: H. Croft PO Box 1901

M. Hatcher Warren, MI 48090
L. House
J. Jackson 1 General Dynamics Land Systems
E. Maddox ATTN: William M. Mrdeza
R. Musante P0 Box 2045

1105 Coleman Ave, Box 1201 Warren, MI 48090
San Jose, CA 95108

5 General-Dynamics Land Systems
GE Aircraft-Engines ATTN: Richard Auyer
ATTN: Dr. Roger-B. Dunn Otto-Renius
One Neumann Way, MD J185 N. S. Sridharan
Cincinnati, OH- 45215-6301 Dean R. Loftin

Dr. Phil Lett

General Atomics P0 Box 2074
ATTN: Chester J.Everline, Warren, MI 48090-2074

Staff Engineer
P.O. Box 85608 3- General Motors Corporation
San Diego, CA 92138-5608 Research Laboratories

-,-TTN: J-..Boyse
General=Dynamics C J. Joyce
ATTN: Dr. FredzCleveland R. Sarraga
P.O. Box 748 Warren, MI 48090
Mail Zone 5965
Ft. Worth, TX 76101 X General Motors Corporation

Military Vehicles Operations
4 General Dynamics Combat Vehicle Center

ATTN: MZ-4362112,-Robert Carter ATTN: Dr. John A. MacBain
MZ-4362029, Jim Graciano POBox 420 Mail Code 01
MZ-4362055, Gary Jackman 'Indianapolis, IN 46206-0420
MZ-4362055, Jay A. Lobb

38500 Mound 1 Gettysburg College
Sterling Heights,-MI 48310 -Box405

Gettysburg, PA 17325

3 General Dynamics-Corporation

ATTN: MZ-2650, Dave Bergman 1 Grumman Aerospace Corporation
MZ-2860,John Romanko Research and.Development Center
MZ-2844, Cynthia Waters ATTN: Dr. Robert T. Brown,

P0 Box 748 Senior Research Scientist
Ft. Worth, TX 76101-0748 Bethpage, NY 11714

General Dynamics Land Systems 1 GTRI-RAIL-MAD
ATTN: Rb6ert-Garter ATTN: Mr. Joe Bradley
P0 Box 1804 CRB 577
Warren, MI 48090 Atlanta, GA 30332
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Hughes Associates 1 California Institute-of Technology
ATTN: J. Thomas Hughes Jet Propulsion Laboratory
2730 University Blvd. ATTN: D. Lewis
Suite 902 4800 Oak Grove Drive

Wheaton, MD 20902 Pasadena, CA 91109

2 INEL/EG&G 1 Kaman Sciences Corporation
Engineer Lab ATTN: Timothy-S. Pendergrss
ATTN: Ray Berry 600 Boulevard South, Suite 208

M. Marx Hintze Huntsville, AL 35802
PO Box 1625
Idaho-Falls, ID 83,151 1 Ketron, Inc.

ATTN: Robert S. Bennett
-Interactive Computer Graphics-Center 901 Dulaney Valley Rd #220
Rensselear Polytechnic Inst. Baltimore, MD 21204-2600
ATTN: M. Wozny
Troy, NY 12181 1 Keweenaw Research Center

Michigan Technological
International Development Corporation University
ATTN: Trevor 0. Jones ATTN: Bill-Reynolds
18400-Shelburne Road Houghton, MI 49931
Shaker Heights, OH 44118

1 Lanxido Armor-Products
Intergraph ATTN: Dr. Robert A. Wolffe
National Exploitation Syitems Tralee Industrial'Park
ATTN: John H. Suter Newark, -DE 19711
2051 Mercator Drive
Reston, VA 22091-3413 2 Lincoln Laboratory

MIT
ISAT ATTN: Dr. Robert Shin
ATTN: Roderick Briggs Dr. Chuck Burt
1305 Duke Street P.O. Box 73
Alexandria, VA 22314 Lexington,-MA 02173

ITT Defense 3 LincolnLaboratory
ATTN: Joseph Conway MIT
1000 Wilson Blvd. SurveillanceSystems-Group
30th-Floor ATTN: R. Barnes
Arlington, VA 22209 G.-Knittel

J. Kong
Joint Technical Coordinating-Group 244 Wood'Street
ATTN: Philip Weinberg Lexington, MA 02173-0073
JTCG/AS5
AIR-516J5 1 Lockheed-Corporation

-Washington, DC 203615460-- ATTN: R.C.'Smith-
PO Box 551

Burbank,,GA 91520
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3 Lockheed-California Company 3 Martin Marietta Aerospace
ATTN: C. A. Burton ATTN: MP-113, Dan Dorfman

R. J. Ricci MP-433, Richard S. Dowd
M. Steinberg MP-243, Thomas C.-D'Isepo

Burbank, CA 91520 P0 Box 555837
Orlando, FL 32855-5837

2 Lockheed-Georgia Company
ATTN: Ottis F. Teuton 3 Mathematical Applications Group, Inc.

J. Tulkoff ATTN: M. Cohen
Dept. 72-91, Zone 419 R. Goldstein
Marietta, GA 30063 H.- Steinberg

3 Westchester Plaza
Lockheed Palo Alto Research Lab Elmsford,-NY 10523
ATTN: John A. DeRuntz, JR
0/93, B/251 I Maxwell Laboratories, Inc.
3251 Hanover Street ATTN: Dr. Michael Holland
Palo Alto, CA 94304 8888 Balboa Avenue

San Diego,CA 92123-1506
Logistics ManagementInstitute
ATTN: Edward D. Simms Jr. 1 McDonnell=Douglas Astronautic
6400 Goldsboro Road- ATTN: Nikolai A. Louie
Bethesda, MD 20817-5886 5301 Bolsa Avenue

Huntington-Beach, CA 92647
Los Alamos Technical-Associates, Inc.
ATTN: John S. Daly 1 McDonnellDouglas, Inc.
6501 Americas Parkway, #900 ATTN: David Hamilton
Albuquerque, NM 871-10 PO Box 516

St. Louis,MO 63166
2 Los Alamos Technical-Associates, Inc.

ATTN: James C. Jacobs I McDonneliDouglas, Inc.
Donald-M. Lund ATTN: Alan R. Parker

8550 Arlington Boulevard 3855 Lakewood Blvd., MC-35-i8
Suite 301 Long Beach, CA 90846
Fairfax, VA 22031

1 Micro Electronics of North Carolimi
Los Alamos Technical-Associates, Inc. ATTN: Gershon Kedem
ATTN: Thomas Giacofci PO Box 12889
3020 Hamaker Court Research Triangle Park, NC 07709
Fairfax, VA 22031

1 MIT
LTV Aerospace and-Defense Company ATTN: -Dr. S. Benton
ATTN: Daniel M. Reedy RE15-416
PO Box 655907 Cambridge, MA 02139
Dallas, TX 75265-5907
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5 The MITRE Corporation 1 Norton Company
ATTN: Edward C. Brady, Vice President ATTN: Ronald K. Bart

Dr. Robert Henderson -1 New Bond Street
Dr. Nicklas Gramenopoulos Worcester, MA 01606-2698
Dr. Narayana Srinivasan
Norman W. Huddy 1 The Oceanus Company

7525 Colshire Drive ATTN: RADM Robert H. Gormley,
McLean, VA 22102-3184 (Ret)

PO Box 7069
2 NFK Engineering, Inc. Menlo Park,-CA 94026

ATTN: Dr. Michael-P. -Pakstys
Justin W. Held- I Oklahoma State University

4200 Wilson Blvd. College of Engineering, Architecture
Arlington, VA 22203-1800 and Technology

ATTN: Thomas M. Browder, Jr.
NFK Engineering, Inc. P0 Box 1925
ATTN: John J. Turner Eglin AFB, FL 32542
1125 Trotting HorseLane
Great Falls, VA 22066 1-Pacific Scientific/Htl Division

ATTN: Robert F. Aldrich
I NASA-Ames Research Center 1800-Highland Avenue

ATTN: Dr. Alex Woo Duarte, CA 91010
Mail Stop 227-2
Moffett Field, CA 94035-1000 1 Perceptronics, Inc.

ATTN: Dean R. Loftin
NASA-Ames Research-Center 21111 ErwinStreet
ATTN: Leroy Presley Woodland Hills, CA 91367
Mail Stop 227-4
Moffett Field, CA 94035-1000 1 Princeton University

Mathematics Department
NAVIR DEVCON Fine-Hall
ATTN: Frank Wenograd Washington Road
Code 6043 ATTN: John Tukey
Walminstor, PA 18974 Princeton, NJ 08544-1000

North Aircraft 1 PRI, Inc.
ATTN: Dr. Athanosis Varvatsis ATTN: W. Bushell
Mail Zone 3622/84 Building E4435, Second-Floor
1 Northrop Ave Edgewood Area-APG, MD 21010
Hawthorne, CA 90250

1 RGB Associates, Inc.
1 Northrop Corporation ATTN: R. Barakat

Research and Technology Center -Box B
ATTN: James R. Reis Wayland, MA 01778
Ona-Rcsearch;Park -

-Palos Verdes Peninsula, CA 90274
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Rockwell International Corporation 2 SAIC
ATTN: Dr. H. Bran Tran ATTN: Terry Keller
P.O. Box 92098 Robert Turner
Department 113/GBO1 Suite 200
Los Angeles, CA 90009 1010 Woodman Drive

Dayton, OH 45432
Rockwell International Corporation
ATTN: Keith R. Rathjen, I SAIC

Vice President ATTN David R. Garfinkle
3370 Miraloma Avenue (031-HAOI) Malibu Canyon Business Park
Anaheim, CA 92803-3105 26679-W. Agoura Road, Suite 200

Calabasas, CA 91302
1 Rome-Air Development Center

ATTN: RADC/IRRE, Peter J. Costianes 2 George-Sharp Company
Griffis Air Force Base, NY 13441-5700 ATTN: Dennis M. McCarley

Roger 0. Mau
2121- Crystal Drive

Rome Air Development-Center Suite 714
RADC/OCTM Arlington, VA 22202
ATTN: Edward Starezewski
Building 106 1 Sidwell-Ross and Associates, -Inc.
Griffis Air Force Base, NY 134415730 ATTN: LTG Marion C. Ross,

(USA Ret)
S-Cubed Executive VicePresident
ATTN: Michael S. Lancaster P0-Box 88531
1800 Diagonal Road, Suite 420 Atlanta, GA 30338
Alexandria, VA 22314

1 Sigma Research Inc.
Sachs/Freeman Associates, -Inc. ATTN: Dr. Richard Bossi
ATTN: Donald W. Lynch 4014 Hampton Way

Senior Research Physicist Kent, WA 98032
205,Yoakum Parkway, #511
Alexandria, VA 22304 1 Simula, Inc.

ATTN: Joseph W. Coltman
SAIC 10016 South 51st Street
ATTN: Dr. Alan J. Toepfer -Pheonix, AZ 850,14
2109Air-Park Drive, SE
Albuquerque, NM 87106 1 SimTech

ATTN: Dr. Annie V. Saylor
SAIC 3.307 Bob-Wallace Ave., Suite -1
ATTN: John HMcNeilly, Huntsville, AL 35807

Senior Scientist
1710-Goodridge Drive 1 Alan=Smolen and Associates, Inc.
McLean, VA 22102 ATTN: Alan-Smolen, President

One Cynthia Court
-Palm-Coast, FL 32027-8172
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3 Southwest Research Institute 3 Structural Dynamics-Research
ATTN: Martin Goland Corporation (SDR6)

Alex B. Wenzel ATTN: R. Ard
Patrick H. Zabel W. McClelland

-P.O. Drawer 28255 J. Osborn
San Antonio, TX 78238-0255 2000 Eastman-Drive

Milford, OH- 45150
3 Sparta, Inc.

ATTN: David M. McKinley 1 Syracuse Research Group
Robert E. O'Connor ATTN: Dr.-Chung-Chi Cha

' Karen M. Rooney Merrill Lane
4901 Corporate Drive Syracuse, NY 13210
Huntsville, AL 35805-6201 - System Planning- Corporation

SRI-International ATTN: Ann-Hafer
ATTN: Donald R. Curran 1500 Wilson Blvd
333 Ravenswood Ave. Arlington, VA 22209
Menlo Park, CA 94025

-1 S-Cubed

1 Star -Laboratory, Stanford University ATTN: Robert T. Sedgwick
ATTN: Dr. Joseph NV. Goodman POBox 1620
Electrical Engineering Department La Jolla, CA 92038-1620
233-Dutand Building
Stanford, CA 94305-4055 2 TASC

ATTN: Charles E. Clucus
University of Michigan :Darrell James.
ATTN: Dr. John F. Vesecky 970 Mar-Walt-Drive
2212 Space Research Blvd. Ft. WaltomnBeach, FL 32548
-AnnArbor, MI 4109-2143-

I TASC

IPrinceton University ATTN: Harry-I. Nimon, Jr
ATTN: Dr. Curt Callen 1700 N. Moore Street, Suite 1220
-Physics Department Arlington, VA 22209
PO Box 708
-Princeton, NJ 08544 1 TASC

ATTN: COL James Logan (Ret)
University of California, SaiiDiego 1101 Wilson=Blvd.
ATTN: Dr. Gordon J. MacDonald Suite 1500-
Institute on Global Conflict Arlington, -VA 22209

and Cooperatiov (0518)-
9500:Gilman-Drive I COLSA, Inc.
La-Jolla, CA 92093-0518 ATTN: Mr. Willy Albanes

P.O. Box 1068
Huntsville, AL 35807-3301

1 Techmatics, Inc.
ATTN: RonaldR. Rickwald
2231 Crystal.Drive
Arlington, VA 22202-3742
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Technical Solutions, Inc 1 University-of Illinois at Urbana-Champaign
ATTN: John R. Robbins Department of Electrical and Computer
P O.Box -1148 Engineering
Mesillia Park, NM 88047 ATTN: Dr. Shung-Wu Lee

1406 W. Green
Teledyne Brown Engineering Urbana, IL 61801
ATTN: JohnW. Wolfsberger, Jr.
Cummings Research Park 1 The Johns-Hopkins University
300 Sparkman Drive, NW Applied PhysicsLaboratory
PO Box 070007 ATTN: Jonathan Fluss
Huntsville, AL 35807-7007 Johns Hopkins Road

Laurel, MD 20707
Tradeways, Ltd.
ATTN: Joseph G. Gorski, I University of Nevada

President Environmental Research Center
307F Mrple Avenue West ATTN: Dr. Delbert S. Barth
Vienna, VA 22180 Senior Scientist

Las Vegas, NV 89154-0001
Ultramet
ATTN: Dr. Jacob J. Stiglich 1 University-of North Carolina
12173 Montague Street ATTN: -Professor Henry Fuchs
Pacoima, CA 91331 208 New \Vest Hall,(035A)-

Chapel-Hill, NC 27514
United. Technologies Corporation
Advanced-Systems Division 3 Ohio State Univeysity
ATTN: Richard J. Holman Electroscience-Laboratory
10180 Telesis-Court ATTN: -Dr. tonaldMarheka
San Diego, -A 92121 -Dr.,Edward' H. New man-

-Dr. Prasbhaker H. Patlink
University of Idaho i320 Kinnear -Road
Department- of Civil Engineering Columbus, -OH 43212
ATTN: Dr. Dennis R. -Horn

Assistant Professor 1 University of Rochester
Moscow, ID 83843-4194 ATTN: Nicholas George

College-of-Engineering and Applied
IUniversity-of Illinois at Chicago Science

Communications Laboratory Rochester,-NY 14627
ATTN: Dr. Wolfgang-M. Boerner
PO Box 4348 3 University- of Utah
M/O 154, 1141-SEO Computer-Science Department
Chicago, IL 60680 ATTN: R.-Riesenfeld

E. Cohen
University of Illinois at Urban a-Champaign L. Knapp
Department of Civil Engineering 3160 Merrill Engineering Bldg

and'Environmental Studies- Salt Lake-Oity, UT 84112
ATTN: Dr. E. Downey Brill, Jr.
208 North Romine
Urbana, IL 61801-2374
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3 University of Washington 2 SURVlCE-Engineering
409 Department of Electrical ATTN: Jim-Foulk

Engineering, FT-10 George-Lard
ATTN: Dr. -IrenemPeden 1003 Old Philadelphia Road

Dr. Akira Ishimaru Aberdeen, MD-21001
Dr. Chi Ho Chan

Seattle, WA 98105 1 SY iCE Engineering
ATTN: Edwin S. Wixson

I Virginia Polytechnic Institute 3200 Carlisle-Blvd., NE
and State University Suite 120

Industrial Engineering Operations Research Albuquerque, NM 87100
Department

ATTN- Robert 0. Williges 2 Sverdrup Technology
302 Whittemore-Hall ATTN: Dr. Ralph Calhoun
Blacksburg, VA 24061-8603 Bud Bruenning

PO Box 1935
I LTV Aircraft Products-Group Eglin AFB,-FL-32542

ATTN: Paul T.-Chan, NI/S 194-63
P0 Box 655907 1 Georgia Technical-Research Institute
Dallas, TX 75265-5907 Systems and Technical Laboratory

ATTN: Dr.-Charles Watt
I LTV Missiles -and&Electronics Group- 1770 Richardsons Road

ATTN: Roger WV. Melin Smyrna, GA 30080
PO Box 650003
M/S EM-36 I Georgia -Institute of Technology
Dallas, TX 75265-0003 ATTN: Dr.-Richard-Moore

ECSL/EME
I Wackenhut Applied -Technologies Center ERB Building, Room I1I1

ATTN: Robert-D.-Carpenter Atlanta,-GA 30332
10530 Rosehaven-St.
Suite 500 1 Georgia -Institute of Technology
Fairfax, VA 22030-2877 ATTN: Dr.-L.-G. Callahan, Jr.
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